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model confirms the approach and yields information on
accuracy and strategies to ensure convergence. Section 4Orbit tracing is a numerical technique to design high-current

charged particle guns and transport systems. Although most avail- discusses application of the method on a two-dimensional
able programs use the finite-difference approach to calculate electric finite-element mesh. Section 5 summarizes correction fac-
fields, the finite-element method has advantages for accuracy and tors to improve the accuracy of space-charge-limited emis-
versatility. This paper describes an effective algorithm to model

sion calculations from curved electrodes. The methodspace-charge-limited emission and a procedure to apply it to vari-
makes it easy to model curved and planar sources withable-resolution conformal triangular meshes with multiple emission

regions. Improved tabulations of space-charge solutions for sharply mixed source-limited and space-charge-limited flow.
curved emission surfaces are given. In a benchmark Pierce diode
simulation, the procedure gives an absolute current prediction
within 0.2% of the analytic value and particle orbits within 0.18 of 2. BEAM-GENERATED FIELDS ON A
the predicted exit angle. Q 1996 Academic Press, Inc. FINITE-ELEMENT MESH

Figure 1 shows a conformal mesh near an electron-emit-
1. INTRODUCTION ting surface. The mesh divides the vacuum space into trian-

gular elements that closely match the boundary surfaces.High-current electron guns are used in microwave
The size of the triangles can be adjusted to give fine resolu-sources, beam welders, materials processing accelerators,
tion in regions of strong field variations. The finite-elementand a range of other applications [1]. Beam-generated elec-
expression of the Poisson equation proceeds from the inte-

tric fields strongly influence the characteristics of these
gral form of the Maxwell equations applied over the trian-

devices, and numerical calculations are essential for their gles that surround each mesh vertex [9–11]. In the linear
design. In most applications, the beam pulse length is much approximation, volume quantities like space-charge and
longer than the electron transit time. In this regime, orbit dielectric permeability are constant over each triangle. The
tracing codes [2] are effective tools to find self-consistent numerical form of the Poisson equation relates the poten-
electric fields and beam current density. Several computer tial at each vertex to the potentials at the neighboring
programs exist for electron and ion gun design [3–7]. With points and the characteristics of the six surrounding trian-
the exception of the Demeos code [7], they use finite- gles. The following discussions assume a regular mesh with
difference methods on square or rectangular meshes to six triangles of area ai adjacent to each point. Figure 2
solve the Poisson equation. This paper describes the tech- defines the mesh geometry near a test point. The numerical
nique to model space-charge emission in the finite-element equivalent of the Poisson equation is
Trak code [8]. The method can accommodate multiple
emission regions with arbitrary source shapes and triangu-
lar mesh geometries. Section 2 reviews orbit tracing and
finite-element field solutions. The discussion concentrates
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, (1)on two-dimensional geometries, including the important
cases of cylindrically symmetric guns and slot injectors.
The section also describes the assignment of space-charge
to a finite-element mesh from model particle traces. Sec-
tion 3 summarizes a method to calculate particle orbits Equation (1) states that the vertex potential is a weighted
near an emission surface. The method gives an accurate average of the potential values at the nearest neighbors
representation of local space-charge and avoids the numer- and the surrounding space-charge. The weighting factors

are given byical problem of zero-velocity particles. A one-dimensional
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Dr 5
Ij Dt
DV

. (2)

In Eq. (2), Ij is the current for model particle j and DV is
the volume represented by the triangular. For example, in
cylindrical coordinates the volume is DV 5 2fra DA, where
DA is the triangle area and ra is the radius of the trian-
gle centroid.

The challenge to finding self-consistent electric fields is
that the particle orbits are not known in advance; therefore,
the quantity r(x) and the fields are unknown. The resolu-
tion in orbit tracing programs is to use an iterative ap-
proach. Initially, the total fields are set equal to the applied
field and a set of model particle trajectories are calculated.
Space-charge deposition follows the prescription of Eq.
(2). The fields are then recalculated with the addition of
r(x). The corrected fields give modified particle orbits that,FIG. 1. Example of a conformal triangular mesh with variable resolu-

tion matched to electrode surfaces. in turn, lead to an improved field calculation. With appro-
priate charge averaging, the process converges to the cor-
rect self-consistent fields, even for high-intensity beams.

The calculation is more difficult for beams from a space-
charge limited source [13]. Here, the model particle cur-
rents are not known in advance—they depend on the elec-W1 5

«1cot(u1a) 1 «2cot(u2b)
2 tric field intensity near the source. The problem is that

space-charge-limited emission coincides with zero electric...
field at the source surface. In a numerical model, it is
impossible to start model particles at this surface because

W6 5
«6cot(u6a) 1 «1cot(u1b)

2
. they will not advance. The solution is to create the particles

at a hypothetical emission surface and to determine the
model particle current from a local application of analytic

Figure 2 defines the angles that characterize the triangle formulae. Sections 3 and 4 describe the method used in
geometries. Equation (1) represents a large set of coupled Trak. In contrast to other ray tracing codes, the method
linear equations. These equations can be solved by iterative
relaxation or by a direct solution using matrix algebra [9].

Space-charge arises from the beam density in charged-
particle gun calculations. The standard technique to esti-
mate r(x) is to represent a beam with a moderate number
of model particles [2]. Because of the laminar behavior of
particle distributions under the Vlasov equation, a model
particle can represent the average behavior of many nearby
particles in phase space. The procedure is to follow the
orbits of model particles in the total electric and magnetic
fields as if they were single electrons (or ions), but to assign
space-charge along the trajectory as though the model par-
ticle carried the charge of many adjacent particles. The
procedure to assign space-charge to mesh triangles is
straightforward. A Runge–Kutta integration [12] of the
equations of the motion with time step Dt yields a set of
closely spaced coordinates x(n Dt) and the positions at
intermediate time steps, x([n 1 As] Dt). The indices of the
triangle occupied by the particle at the intermediate time
are available from the electric field calculation. Over a FIG. 2. A point of a finite-element triangular mesh—six neighboring
time step in the orbit solution for particle j, the space- mesh points define six surrounding triangles. Definitions of quantities for

linear approximation of the Poisson equation.charge density of the triangle is incremented by
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Equation (6) is the familiar Child law [14]. The electrostatic
potential varies as

f 5 Vo(x/d)4/3.

The electric field is zero at x 5 0.0 and has the value

FIG. 3. One-dimensional acceleration gap for electrons. Definition (7)Ex 5 2(4/3) Vo/d
of quantities for the Child law solution and numerical calculation of
space-charge-limited emission.

at x 5 d.
To find a numerical solution for space-charge flow, we

apply the Child law over an emission surface at the cathode
is compatible with arbitrary mesh and source geometries of width ds . The surface is much thinner than the gap,
and multiple regions of emission. ds ! d. The potential of the emission surface relative to

the source is fs(ds). Nonrelativistic expressions are valid
3. ONE-DIMENSIONAL MODEL FOR SPACE-CHARGE- if ds is small enough so that efs ! mec2. At the surface

LIMITED EMISSION electrons have the velocity

This section reviews the numerical calculation of space-
(8)ve 5 [2efs/me]1/2.charge-limited emission in the one-dimensional gap of Fig.

3—results can be checked against Child law [14] predic-
tions. The discussion holds for electrons—it can be easily Electrons always have nonzero velocity in the region to
extended to ions. The gap has width d and an applied the right of the emission surface; therefore, the associated
voltage of 1Vo . The condition of space-charge-limited flow space-charge follows from an integration of the relativistic
is that the electron density approaches a value that reduces equations of motion and the prescription of Eq. (2). Prob-
the electric field on the cathode surface to zero. For nonrel- lems arise assigning space-charge to mesh elements to the
ativistic electrons, the Poisson equation for electrostatic left of the emission surface. Direct calculations from the
potential is analytic Child law expressions are difficult to extend to a

two-dimensional triangular mesh. Writing a program that
can reliably perform volume integrations for arbitraryd2f

dx 2 5
jo

«oÏ2ef/me

. (3) mesh and emitter surface geometries is challenging. An
alternative is to project model electrons backward to the
source from the emission surface with the velocity magni-In Eq. (3), the quantity jo is the current density, a constant
tude of Eq. (8), assigning space-charge according to Eq.over the gap. The solution of the equation with the follow-
(2). This procedure can lead to density divergences foring boundary conditions determines the value of jo: f(0)
solutions near the space-charge limit when the model parti-5 0, df(0)/dx 5 0, and f(d) 5 Vo . Equation (3) can also
cle velocity approaches zero.be written in terms of the dimensionless variables F 5

The Trak program uses a variant of the second methodf/Vo and x 5 x/d as
that avoids the problem of density divergence. To illustrate
the method, consider the one-dimensional model of Fig.d2F

dx 2 5
G

ÏF
, (4) 3. The goal is to find a numerical solution of the Poisson

equation by tracking a single model particle from the emis-
sion surface. The calculation is initialized with the appliedwhere
field solution, a uniform electric field Ex 5 2Vo/d. The
initial potential at the emission surface is

G 5
jo d2

«oÏ2e/me

V 3/2
o . (5)

fs 5 Vo(ds/d).

The solution of Eq. (4) with F(0) 5 0, F9(0) 5 0, and
F(1) 5 1 gives G 5 4/9 5 0.444444, equivalent to The model particle carries the current I 5 jA, where
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To achieve stable convergence over the range of parame-and A is a unit area. To find the charge density to the right
ter choices, it was necessary to introduce two correctionof the surface, the model electron is created at the emission
factors. The first was a suppression factor, applied on initialsurface with velocity
iteration cycles. On the first cycle, the applied electric field
at the emission surface was much larger than the final self-(10)vx 5 (2efs/me)1/2

consistent value. Therefore, application of Eq. (9) gives
excessive space-charge. This often caused an instability

and advanced with uniform time step Dt. The problem is between cycles—the emission current was alternately en-
how to assign charge to the left of the emission surface hanced and depressed near the cathode. One improvement
while avoiding a zero velocity model particle. One solution was to use a gentle start, multiplying the value of Eq. (9)
is to take a uniform density that gives the same value of by a graded sequence of numbers less than unity during
electric field at the emission surface as the Child law, Eq. initial cycles. In addition, charge averaging between itera-
(7). This method has the advantage that a uniform density tion cycles also reduced emission instabilities. Instead of
can be impressed on a two-dimensional triangular mesh zeroing the values of rk for each particle tracking cycle,
simply by projecting constant-velocity model particles they were initially set equal to a fraction of the space
backwards. This circumvents dealing with the complexities charge from the previous cycle.
of mesh and emission surface geometries. Inspection of
the solution of the one-dimensional Poisson equation gives

r n
k 5 (1 2 «)r n21

k .the desired density value ro 5 4«ofs/6d 2
s . This density

results if the model particle moves backward from the
emission surface to the source with the current density of Here, « is a number between 0.0 and 1.0. During particle
Eq. (9) and with a constant velocity equal to two-thirds tracking, the incremental space-charge is
that of Eq. (10),

r n
k 5 r n

k 1 « Drk .
vx 5 2(Sd) Ï2efs/me .

A value of « 5 1.0 corresponds to no averaging. A value
This method is easy to implement on a two-dimensional

« ! 1 gives averaging over several previous cycles. On the
mesh because the logic of particle charge assignment and first cycle, « is set equal to 1.0. Generally, a value of « 5
tracking is almost identical for the forward and backward 0.5 gave stable one-dimensional calculations. A low value
orbit integrations. The only difference is to set electric is essential for two-dimensional calculations with complex
field values equal to zero during the backward trace. After reflex orbits.
several iterations, the emission surface potential ap- Runs were made to check the effect of the mesh size,
proaches given by the parameter NMesh, on the solution accuracy.

The emission region occupied 10% of the gap, the space
fs 5 Vo(ds/d)4/3, charge averaging factor was « 5 0.5 and the time step was

short. The calculations converged in about 15 cycles. The
tabulated error is the difference between the predictedand the model particle current density, I/A, approaches

the value of Eq. (6). current density and the Child law value. The error dropped
to 0.34% with only 20 mesh boxes. A second test checkedOne-dimensional finite-element calculations were made

to test the procedure and to document parameter sensitivi- the effect of the emission region width, ds/d. These runs
used NMesh 5 50 and a short time step. The accuracy wasties. The model used a uniform element size of Dx. Back-

substitution [15] was applied to solve the one-dimensional 0.07% for ds/d 5 0.08 and had the acceptable value of 0.43%
for an emission extending over only one mesh element. ItPoisson equation, and particle orbits were advanced with

a second-order Runge–Kutta routine. The free parameters is noteworthy that the method converges to the correct
value of current density, even when the emission region fillsin the model were NMesh (the number of elements across

the gap), ds/d (the relative distance of the emission surface the entire gap. In the one-dimensional model, the current
density was almost independent of ds/d. Nonetheless, it isfrom the source), and Dt (the time step for the orbit integra-

tion). The scaling parameter for the time step was the important to note that two-dimensional calculations re-
quire that ds/d ! 1. In this limit the surface conforms totransit time across a cell for a particle moving at the exit ve-

locity, the source shape and the errors in the transverse electric



492 STANLEY HUMPHRIES JR.

field resulting from the assumption of uniform density are
correspondingly small.

The final test checked the effect the time step size for
NMesh 5 50 and ds/d 5 0.10. For a value Dt/Dto ! 1, the
model particle took several time steps to cross each mesh
element, giving a smooth distribution of r(x). For the value
Dt/Dto 5 20.0, the paricle crossed many mesh elements in
a time step giving an irregular distribution of space-charge.
Even for this extreme case the method converged to a
current density value within 0.3% of the Child law value.
In summary, the one-dimensional tests confirm that the
constant density procedure gives good accuracy for Dx ,
d/20, an emission distance of about 0.10 of the acceleration
gap and a value of Dt such that particles travel about one
mesh unit per time step near the emission surface. In two-
dimensional calculations, these conditions can be easily
satisfied on a variable resolution triangular mesh.

4. PROCEDURES FOR SPACE-CHARGE-LIMITED
FIG. 4. Definition of two emission regions on a shaped cathode,

EMISSION IN TWO DIMENSIONS showing two sets of ordered source points, projected emission surface
points, and distance spans at the source and emission surfaces.

The space-charge emission method of Section 3 can be
applied to two-dimensional calculations on a finite-element
triangular mesh. The main tasks are to identify source there are two options to set the spans. For a sharp emission

edge, the quantity Ds(i) equals the distance from the edgepoints, to set emission surface points, and to assign effective
areas to model particles. The first step is to set emission point halfway to the adjacent point. This convention gives

correct total current if the end points represent the edgesurfaces on the electrodes. This task is accomplished during
mesh generation by assigning a special flag to surface points of the source. The second option is applied to blend the

current density from two or more adjacent sets. In this case,that emit particles. For space-charge deposition, there is
little advantage to choosing the spacing between particles the distance span equals the full distance to the adjacent

particle of the set.smaller than the local mesh triangle size. Therefore, the
convention in the Trak program is to create a model parti- The third task of the particle tracking program is to

determine a set of points at a distance ds from the sourcecle at each of the emitting source points. The mesh resolu-
tion at the source determines the number of model particles that constitutes the emission surface. Trak performs this

operation geometrically. For each inside point of a set, thein the beam. The Trak program handles up to 10 separated
emission surfaces. The term set denotes the surface points program finds a unit vector normal to the local source

surface using the positions of the two adjacent points. Theand model particles that constitute an individual emis-
sion surface. vector is then used to compute the corresponding emission

surface point (Fig. 4). For the end points of a set, the vectorAfter reading the computational mesh, the initial task
of the tracking program is to collect the source points in calculation uses the coordinates of the end point and one

adjacent point. In general, sources may be concave or con-each set and to arrange them spatially in order of distance
from a reference point. The user can specify reference vex—the surface point locations alone do not fully con-

strain the normal vector. The procedure in Trak is to movepoints for each set to resolve ordering ambiguities. With
judicious choices of reference points and sets, Trak can in one direction and then to make a sample electric field

calculation. If the procedure returns an error, the point ismodel emission from any shaped surface, including inden-
tations and discontinuities. Figure 4 illustrates the defini- inside an electrode or outside the computational region.

In this case, the program tries the opposite direction. Thistion of surface points, sets, and reference points. The figure
also shows point ordering. The next task is to compute the procedure gives the correct emission surface location for

any source shape or orientation—it also signals an errordistance span of each model particle on the source surface,
Ds(i), where i is the model particle index. These quantities for source concavities that are too small to enclose the

emission surface. Once a set of consistent surface pointsare used to find the effective cross-section areas of the
model particles. For the inside particles of a set, Ds(i) is known, Trak computes the emission surface distance

spans, De(i), using the same conventions applied to theequals the distance between points halfway to the adjacent
particles (Fig. 4). For the two outside particles of a set, source points. These quantities give the effective model
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particle areas at the emission surface, Ae(i). For example, of the analytic value. Figure 5c shows the orbits of 61
model particles and equipotential lines for the self-consis-the expression in cylindrical coordinates is
tent field. As expected, the equipotential lines are normal
to the beam boundary, and the proton orbits are parallelAe(i) 5 2friDe(i),
to within 60.18 at the extraction grid. The current density
at the emission surface is uniform to within 10.2%. Thewhere ri is the distance from the emission point to the

z-axis. accuracy is similar to that reported for the Demeos code
[7]. A comparison calculation was made with Egun [3], aAt this point, the program has enough information to

apply the space-charge procedure of Section 3. On each finite difference code that uses a uniform square mesh.
The calculation used 3200 mesh points, 20 tracking cycles,tracking cycle, Trak first calculates values of the electric

field and the potential difference from the source, fs , at 82 model particles, and the same emission surface distance.
The total current prediction was in error by about 1%. Inevery emission point. For flat or mildly curved surfaces,

substituting the quantities fs and ds in Eq. (9) gives a good the final solution, there was a systematic variation of cur-
rent density and particle divergence from the axis to theapproximation to the emission surface current density.

(Section 5 derives corrections for highly curved surfaces.) beam outer edge. The current density varied by about 5%
and there was an 0.758 beam divergence at the edge.The total current of a model particle is the product of

the current density and Ae(i). The program assigns each
electron a constant velocity Sd (2efs/me)1/2 aligned parallel 5. CORRECTIONS FOR SHARPLY
to the local electric field and tracks it backward to the CURVED ELECTRODES
source, assigning space-charge according to Eq. (9). Next,
the program gives each electron an initial velocity with The application of Eq. (9) to calculate emission surface
magnitude (2efs/me)1/2 aligned anti-parallel to the electric current density is adequate for many conventional electron
field and advances it by the relativistic equations of motion, and ion guns, but corrections are necessary for the accurate
assigning a charge along the way. Trak includes a variety representation of emission from sharply curved surfaces.
of particle orbit termination options—a model particle Initially, we shall concentrate on solutions in rectangular
may stop if it enters an electrode or dielectric, leaves the coordinates. Here, surfaces vary in x and y but extend a
solution region, exceeds a maximum time, or crosses a long distance in z. Figure 6 illustrates a blade emitter. The
special interpolation plane. After all the model electron standard planar Child law (Eq. (9)) applies to the flat
trajectories are complete, the program updates the electro- regions where De(i) > Ds(i). Corrections are necessary at
static potential using Eq. (1). The process repeats for sev- the sharply curved edges, where De(i) . Ds(i). Correction
eral cycles until the solution converges. The two-dimen- factors can be estimated by assuming that flow in the sec-
sional calculations use the gentle-start suppression factors tion of the emission region corresponding to a model parti-
and charge averaging procedures discussed in Section 3. cle approximates space-charge-limited flow in a cylindrical

To demonstrate the accuracy of the methods in a two- section. Numerical solutions in cylindrical and spherical
dimensional calculation, consider the standard Pierce di- coordinates have long been available. A familiar example
ode for a sheet electron beam [16]. Figure 5a illustrates is the Langmuir a function for spherical flow [18]. Nonethe-
the geometry. The system extends out of the page and has less, it is worthwhile to extend the calculations to determine
reflection symmetry about the bottom axis. The flat surface high-accuracy correction factors that are better suited to
on the left is a proton emitter. The focusing electrode above particle tracking codes.
the emitter inclines at an angle of 22.58. This electrode, The insert of Fig. 6 illustrates the geometry for diverging
combined with the shaped cathode and extraction grid on flow. If the angular span of an edge section is much smaller
the right, ensures uniform current density over the source than 1 radian, then the distance spans are related to the
surface and parallel orbits for the exiting protons. Equation inner and outer radii of the equivalent cylindrical solu-
(6) gives the current density with d equal to the distance tion by
between the emitter and the extraction grid and with Vo

equal to the anode–cathode voltage. In this example, val- De(i)
Ds(i)

>
ro

ri
.ues of d 5 2.0 cm and Vo 5 50 kV give a predicted current

density of 0.1528 A/cm2. The Trak calculation uses the
4500 point mesh of Fig. 5b with variable resolution. Note

Given an emission surface spacingthe resolution enhancements in the propagation and emis-
sion regions. The calculation takes 135 s for 20 tracking

ds 5 ro 2 ri , (11)cycles on a 90 MHZ Pentium [17] computer. With an emis-
sion surface distance of ds 5 2 mm, the code prediction of
current density is 0.1530 A/cm2. This figure is within 0.2% and a potential difference of fs , the goal is to find the
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FIG. 5. Benchmark test of the ideal Pierce diode—structure extends out of page and is symmetric about the bottom axis: (a) Geometry and
electrode potentials (xmin , 0.0 cm; xmax , 2.5 cm; ymin , 0.0 cm; ymax , 4.0 cm). (b) Variable resolution mesh used for a TRAK simulation. (c) Detailed
view of model particle orbits and equipotential lines for the self-consistent field solution (xmin , 0.0 cm; xmax , 2.5 cm; ymin , 0.0 cm; ymax , 2.5 cm).

current density at the outer radius (emission surface). It the radii equals ds (Eq. (11)). If jo is the current density
at the emission surface, then the electron space-chargeis convenient to compare the solution to the prediction of

Eq. (9) for the same values ds and fs to define a curvature density is given by
correction factor, Fc . This number is a function of the ratio
of distance spans, r(r) 5 2joro/rvr .

bi 5 De(i)/Ds(i).
Taking the radial velocity as

The values of bi are easily calculated for each model parti-
cle during the emission surface setup procedure. Correc- vr 5 (2ef/me)1/2,
tion of the current density simply involves multiplying the
current density at each emission point determined from the Poisson equation is
Eq. (9) by Fc(bi).

Consider the diverging flow of electrons in the cylindrical
region of Fig. 6. The electrons move from ri at ground 1

r
d
dr

r
df

dr
5

joro

«or Ï2ef/me

.
potential to ro at f 5 Vo , where the difference between
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calculation [19] located values of the parameters for which
the equation satisfied the boundary conditions at Ri (Eqs.
(13)). Using the planar Poisson equation as a test, the
number of iterations and the variational parameters were
adjusted for accuracy to five decimal places. The solution
was almost the same for convergent beams—the only
change was to take the initial radii as

Ri 5 1/(1 2 b),
(15)

Ro 5 b/(1 2 b).

Table I shows the current adjustment factor with accu-
racy to four decimal places calculated from 100 shooting
cycles. The table encompasses the full practical range. For
larger or smaller values of b, the potential variation near
the surface is poorly represented by the assumption of a
cylindrical section. The following series expansion gives FcFIG. 6. Cylindrical correction for elements on the curved surface of
accurate to 5 3 1024 over the range of the table:a blade emitter—structure extends out of page.

Fc 5 0.7860 1 0.2282/b 2 0.0142/b2.
Introducing the dimensionless variables F 5 f/Vo and
R 5 r/ds , we can rewrite the above equation as Curvature corrections for systems with cylindrical sym-

metry are more involved. If the emitter surface has a center
of curvature on the z-axis, then space-charge flow in an1

R
d

dR
R

dF

dR
5

GRo

ÏF
, (12)

element is spherical. This case corresponds to the element
marked a in Fig. 7. The spherical Poisson equation has

where Ro 5 ro/ds and G is given by Eq. (5). the form
Equation (12) holds over the range Ri 5 ri/ds , R , Ro

and satisfies following boundary conditions 1
R2

d
dR

R2 dF

dR
5

GR2
o

ÏF
.

F(Ri) 5 0.0,
(13)

The above equation has the same boundary conditions asdF(Ri)/dR 5 0.0,
Eq. (12). Equations (14) and (15) relate the inner and
outer dimensionless radii to the parameter b 5 De/Dsand
for diverging and converging flows. Solution of the above
equation gives the spherical correction factor, Fc(b), listedF(Ro) 5 1.0.
in Table I. The spherical correction factor is related to the
Langmuir function [18] byThe inner and outer radii can be written in terms of b as

Fc 5 1/aR2
o .Ri 5 1/(b 2 1),

(14)
Ro 5 b/(b 2 1). The quantity Fc is better suited to tabulation and series

approximation because it is close to unity over the range of
Solution of the boundary value problem gives a value of the table, while the Langmuir function varies over several
G that in turn determines the space-charge-limited current orders of magnitude. The following expansion gives a good
density, jo . The curvature adjustment factor is related to approximation to the values of Table I:
the value of G by

Fc 5 0.4281 1 0.8060/b 2 0.3094/b2

Fc(b) 5 9G(b)/4.
1 0.0845/b3 2 0.0092/b4.

Equation (12) was solved with a fourth-order Runge–
Kutta integration. The integration started at Ro with ap- Spherical corrections do not apply in cylindrical coordi-

nates to cases where the center of curvature of a surfaceproximate initial values of G and dF(Ro)/dR. A shooting
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TABLE I

Curvature Adjustment Factor
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ment in downstream regions. Good approximations for the
space charge and potential variations can be derived by
tracking particles backward from the emission surface to
the source at a specific constant velocity. The method is
easily extended to accommodate multiple emission re-
gions, sharply curved sources, and mixed source-limited
and space-charge-limited emission.
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FIG. 7. Cylindrical emitter—a figure of revolution about the axis. A
spherical correction is applied to surface element a and a cylindrical
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